Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991–2007
نویسندگان
چکیده
[1] We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1–3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991–2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic doublefrequency microseismic band of 4–10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The Lg noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years.
منابع مشابه
Wiener filtering with a seismic underground array at the Sanford Underground Research Facility
A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave detector underground. A major noise source for these detectors would be Newtonian noise, which is induced by fluctuations in the local ...
متن کاملEvent-driven Seismic Interferometry with Ambient Seismic Noise
SUMMARY By cross-correlating recordings of ambient seismic noise, one can retrieve the subsurface reflection response. The quality of the retrieved reflections would depend on the qualities of the ambient noise. In a previous study, we cross-correlated ambient-noise data recorded in a desert area in North Africa and showed that we retrieved reflections. This was done assuming that body-wave noi...
متن کاملDetection of an ultralow velocity zone at the core-mantle boundary using diffracted PKKPab waves
[1] Seismic phases diffracted around Earth’s core contain information about lowermost mantle wave speeds. By measuring the slowness of incident diffracted energy from array recordings, seismic velocity along the diffracted path can be estimated. Here we apply this principle to diffraction of the major arc seismic phase PKKPab recorded at the Canadian Yellowknife array to estimate P wave velocit...
متن کاملBroadband spectra of seismic survey air-gun emissions, with reference to dolphin auditory thresholds.
Acoustic emissions from a 2120 cubic in air-gun array were recorded through a towed hydrophone assembly during an oil industry 2-D seismic survey off the West Wales Coast of the British Isles. Recorded seismic pulses were sampled, calibrated, and analyzed post-survey to investigate power levels of the pulses in the band 200 Hz-22 kHz at 750-m, 1-km, 2.2-km, and 8-km range from source. At 750-m ...
متن کاملUsing a novel method for random noise reduction of seismic records
Random or incoherent noise is an important type of seismic noise, which can seriously affect the quality of the data. Therefore, decreasing the level of this category of noises is necessary for increasing the signal-to-noise ratio (SNR) of seismic records. Random noises and other events overlap each other in time domain, which makes it difficult to attenuate them from seismic records. In this r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009